Harvesting energy from the marine sediment--water interface.

نویسندگان

  • C E Reimers
  • L M Tender
  • S Fertig
  • W Wang
چکیده

Pairs of platinum mesh or graphite fiber-based electrodes, one embedded in marine sediment (anode), the other in proximal seawater (cathode), have been used to harvest low-level power from natural, microbe established, voltage gradients at marine sediment-seawater interfaces in laboratory aquaria. The sustained power harvested thus far has been on the order of 0.01 W/m2 of electrode geometric area but is dependent on electrode design, sediment composition, and temperature. It is proposed that the sediment/anode-seawater/cathode configuration constitutes a microbial fuel cell in which power results from the net oxidation of sediment organic matter by dissolved seawater oxygen. Considering typical sediment organic carbon contents, typical fluxes of additional reduced carbon by sedimentation to sea floors < 1,000 m deep, and the proven viability of dissolved seawater oxygen as an oxidant for power generation by seawater batteries, it is calculated that optimized power supplies based on the phenomenon demonstrated here could power oceanographic instruments deployed for routine long-term monitoring operations in the coastal ocean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal variability in water chemistry and sediment characteristics of intertidal zone at Karnafully estuary, Bangladesh

The Karnafully is one of the most important rivers due to its profound influence on water chemistry and sediment characteristics. The present study intended to assess the quality of water and sediment from intertidal zone of this river in respect to the pollution index. Seasonal water and sediment samples were collected during four seasons (Monsoon, post-monsoon, winter, and pre-monsoon) of 201...

متن کامل

Seasonal variability in water chemistry and sediment characteristics of intertidal zone at Karnafully estuary, Bangladesh

The Karnafully is one of the most important rivers due to its profound influence on water chemistry and sediment characteristics. The present study intended to assess the quality of water and sediment from intertidal zone of this river in respect to the pollution index. Seasonal water and sediment samples were collected during four seasons (Monsoon, post-monsoon, winter, and pre-monsoon) of 201...

متن کامل

Microplastics in water, sediment and salts from traditional salt producing ponds

Plastic pollution has universally known accumulated in all environment compartments and accelerating threat to the sustainability of earth. Field survey to examine the occurrence of microplastics in ancient sea water evaporation technology of ponds at Pallengu-Jeneponto, was conducted. From this sea salt producing ponds, samples of water, sediment and freshly harvested salts were collected. Six...

متن کامل

Restoration of the eutrophic Orbetello lagoon (Tyrrhenian Sea, Italy): water quality management.

The Orbetello lagoon (Tyrrhenian coast, Italy) receives treated urban and land based fishfarms wastewater. The development of severe eutrophication imposed the three main activity adoption focuses on (1) macroalgae harvesting; (2) pumping of water from the sea; (3) confining wastewater to phytotreatment ponds. The responses to these interventions were rapid and macroalgal reduction growth and s...

متن کامل

Bioturbation: impact on the marine nitrogen cycle.

Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 2001